Estimation of means and covariances of inverse-Gaussian order statistics
نویسندگان
چکیده
We propose a simulation algorithm to estimate means, variances, and covariances for a set of order statistics from inverse-Gaussian (IG) distributions. Given a set of Monte Carlo data, the algorithm estimates these values simultaneously. Two types of control variates are used: internal uniform and external exponential. Simulation results show that exponential control variates work better, best when the IG skewness is near the exponential skewness value 2. Either type of control variate provides substantial variance reduction for IG distributions that have low skewness. 2003 Elsevier B.V. All rights reserved.
منابع مشابه
Bayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions
In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...
متن کاملStochastics and Statistics A wavelet - based spectral procedure for steady - state simulation analysis q
We develop WASSP, a wavelet-based spectral method for steady-state simulation analysis. First WASSP determines a batch size and a warm-up period beyond which the computed batch means form an approximately stationary Gaussian process. Next WASSP computes the discrete wavelet transform of the bias-corrected log-smoothed-periodogram of the batch means, using a soft-thresholding scheme to denoise t...
متن کاملBayesin estimation and prediction whit multiply type-II censored sample of sequential order statistics from one-and-two-parameter exponential distribution
In this article introduce the sequential order statistics. Therefore based on multiply Type-II censored sample of sequential order statistics, Bayesian estimators are derived for the parameters of one- and two- parameter exponential distributions under the assumption that the prior distribution is given by an inverse gamma distribution and the Bayes estimator with respect to squared error loss ...
متن کاملESTIMATING THE MEAN OF INVERSE GAUSSIAN DISTRIB WTION WITH KNOWN COEFFICIENT OF VARIATION UNDER ENTROPY LOSS
An estimation problem of the mean µ of an inverse Gaussian distribution IG(µ, C µ) with known coefficient of variation c is treated as a decision problem with entropy loss function. A class of Bayes estimators is constructed, and shown to include MRSE estimator as its closure. Two important members of this class can easily be computed using continued fractions
متن کاملA Novel Merging Algorithm in Gaussian Mixture Probability Hypothesis Density Filter for Close Proximity Targets Tracking ⋆
This paper proposes a novel merging algorithm in Gaussian mixture probability hypothesis density filter to track close proximity targets. The proposed algorithm is added after GM-PHD recursion, in a condition that more than one target has the same state. The weights of Gaussian components decide whether the components can be utilized to extract states, and the means and covariances of Gaussian ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European Journal of Operational Research
دوره 155 شماره
صفحات -
تاریخ انتشار 2004